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Abstract

Advances in nonlinear science have been plentiful in recent years. In particular, interest in nonlinear wave propagation
continues to grow, stimulated by new applications, such as fiber-optic communication systems, as well as the many classical
unresolved issues of fluid dynamics. What is arguably the turning point for the modern perspective of nonlinear systems took
place at Los Alamos over 40 years ago with the pioneering numerical simulations of Fermi, Pasta, and Ulam. A decade later,
this research initiated the next major advance of Zabusky and Kruskal that motivated the revolution in completely integrable
systems. With this in mind, the conference on Nonlinear Waves in Solitons in Physical Systems (NWSPS) was organized by the
Center for Nonlinear Studies (CNLS) at Los Alamos National Laboratory in May of 1997, to assess the current state-of-the-art
in this very active field. Papers from the conference attendees as well as from researchers unable to attend the conference were
collected in this special volume of Physica D. In this paper, the contributions to the conference and to this special issue are
reviewed, with an emphasis on the many unifying principles that all these works share. Copyright © 1998 Elsevier Science B.V.

1. Introduction

Most natural systems are nonlinear, and are there-
fore modeled by nonlinear systems of equations.
The essential difference between linear and nonlinear
systems is that linear systems satisfy a simple su-
perposition principle. That is, any two solutions of a
linear system, added together, form a new solution to
the same equations; this is not the case for solutions
of nonlinear systems. This superposition principle al-
lows the solution of a linear problem to be broken into
pieces, which are then solved independently by, for
example, the Fourier or Laplace transform, and then
added back to form a solution to the original problem.

Despite the difficulty caused by the lack of super-
position principles, the last 40 years have seen revolu-
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tionary progress in solving nonlinear systems, guided
by advances in experiments, phenomenal success in
the computer simulation of nonlinear systems, and new
mathematical analytical tools, such as the inverse spec-
tral transform and methods based on Hamiltonian sys-
tems. The synergy between theory, computation, and
experimental sciences continues to lead researchers to
new levels of understanding.

One field of nonlinear science that has experi-
enced some of the most spectacular progress is wave
propagation phenomena. In this class of problems,
asymptotic procedures that take advantage of small
parameters in physical regimes of interest often re-
sult in a few “universal” partial differential equations
(PDEs). It is one of the mysteries of nature that mzany
of these equations turn out to be integrable, which
essentially means that their solutions can be repre-
sented as a superposition of special wave modes. Thus
some manifestly nonlinear problems can after all be
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broken down and solved via a nonlinear decomposi-
tion in a manner analogous to the way that linear wave
equations are solved with Fourier or Laplace trans-
forms. The most famous of these special wave modes
are perhaps the solitons, localized waves that collide
elastically, suffering only a shift in phase. This ro-
bustness of solitons to overcome strong perturbations
is largely due to a subtle balance between the ten-
dency of nonlinearity to increase the wave slope and
the linear dispersion that tends to flatten a wave. The
occurrence of this type of balance is widespread in
fluid mechanics. The interplay between nonlinearity
and dispersion selects distinctive patterns in natural
systems in situations ranging from the great red spot
on Jupiter to vortices in liquid helium.

Nature abounds with examples of nonlinear waves.
The universality of the underlying mechanisms for
nonlinear waves has allowed advances in nonlinear
wave motion in fluid dynamics to be applied to mole-
cular dynamics and nonlinear optics and vice versa.
Nonlinear mechanisms that just a few years ago were
considered unsolvable are now understood and are
applied to create ultrahigh-speed optical transmission
lines, to model ocean waves, and to better under-
stand the behavior of conducting polymers, cavitons in
plasma physics, and discrete lattices like Josephson-
junction transmission lines.

Often, research on a given natural system began
by investigating a one-dimensional PDE derived as
an approximation to an experimental system in fluid
dynamics, nonlinear optics, material science, or chem-
ically reacting fluid. Many of these have known non-
linear wave solutions (which are sometimes soliton
solutions). This limited knowledge is then extended
with numerical simulations. Next, the models are en-
riched by adding new terms for physical effects, such
as dissipation, driving terms, or higher-dimensional ef-
fects, which were initially left out of the model. Here,
computation begins to play an even bigger role and of-
ten leads the analytic and experimental investigations.

This special issue of Physica D originated with
the conference on Nonlinear Waves in Solitons in
Physical Systems (NWSPS) organized by the Center
for Nonlinear Studies (CNLS) at Los Alamos National
Laboratory in May of 1997. Researchers unable to

attend the conference were also encouraged to con-
tribute to the special issue. In this work, we survey
some of the papers presented at the meeting and those
appearing in this special issue. We also cite some of
talks and posters given at NWSPS in this introduc-
tory paper as it occurred to us to do so. We did not
make an attempt to discuss all of the talks and posters,
as this would go beyond the space we have available.
We stress that omission of mention here is in no way
meant to reflect negatively on the work but is rather
a reflection of the interest bias that our own research
areas inevitably introduce.

2. Fluid dynamics

Perhaps our first perception of wave motion comes
from observing waves on the surface of water. It is so
much a part of our mental model of the natural world
that we go back to this phenomenon time and again
in order to build our intuition of other forms of wave
propagation in nature, even when the analogy is more
challenging to our imagination than the other forms
are in themselves. The salient features of water waves
can be qualitatively grasped by everyone, from kids
playing in a pool to seamen on a ship, and have long
stimulated curiosity in anyone who watches the waves.
It is therefore perhaps ironic that our quantitative un-
derstanding of water waves is still limited, and that
our knowledge in that area is behind that of other less
familiar types of wave motion. Of course, there are
good reasons for this limitation. Of all the waves in na-
ture, water waves possess one of the widest ranges of
variation in their behavior, from the small amplitude
long waves at the surface of a quiet pond to the crash-
ing turbulent surf breaking on a beach. Such a wide
range of scale challenges our mathematical models,
particularly when it combines with another momen-
tous aspect of water waves — nonlinearity.

Just as our first experience with wave motion came
from water waves, so did perhaps our first appreci-
ation of the role played by nonlinearity in physical
models. Observing a beach wave approaching a shore,
one is struck by its emerging as a single identifiable
entity out of an almost disorganized state of the sea
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surface far from the shore. The wave seems to gain
coherence as it approaches the beach and grows taller.
Why is this coherence lost when the wave steepens
and breaks on the shore? What is the mechanism be-
hind the delicate balance between height, width, and
speed? Water waves, and fluid dynamics more gener-
ally, is one of the fields in mathematical physics where
we were first forced to cope with nonlinearity, with
no hope of discarding it while still retaining physi-
cally interesting solutions. We have learned how to in-
corporate nonlinearity’s subtle ways as a creator and
destroyer of stability in simple models of water wave
motion. Why do these models work so well — or do
they?

Fluid dynamics abounds with examples of nonlinear
waves. Waves spontaneously appear in water flowing
down an inclined plane, at interfaces between different
density layers in deep bodies of water, on the surface
of a tray of water on a vibrating table, and are manifest
as well in the large scale meandering of atmospheric
winds at mid-latitudes, and at the enormous fronts of
expanding gases from a supernova explosion. Osborne
and Burch [67] describe the effects of nonlinear ocean
waves that have traveled unchanged for hundreds of
miles on the surface of the Andaman Sea near north-
ern Sumatra. Each wave is approximately 100 m wide
and is separated from the other waves by about 10 km.
These waves, generated by tidal forces, move about
2m/s and are seen as small (about 1 m) surface break-
ing waves. They are the tiny surface signatures of huge
internal waves that exist at the interface between the
stratified thermal and salinity layers in the ocean. The
beautiful mathematics developed to understand these
ocean waves can be used in an attempt to describe the
stability of vortex structures. One spectacular exam-
ple is the giant red spot on Jupiter, a 40 000 km wide
storm which has changed little since it was first ob-
served in the early 17th century. The underlying simi-
larity of all these phenomena is the nonlinear balance
of forces between the dissipation, dispersion, and fluid
convection forces. These are the principles that unify
nonlinear waves in fluid systems of all scales, from
millimeters to 10* kilometers and beyond.

We will give a selective review of some recent ad-
vances in the study of nonlinear dispersive waves, in

particular their stable manifestations as solitary waves,
primarily in water. The remarkable creation, stability,
and interactive properties of these waves as they en-
counter external forcing, like variable depth, have been
extensively studied analytically, computationally, and
experimentally. The broad agreement between these
three approaches is amazing, and they have provided a
useful beacon when they do not agree, signaling where
to look for new understanding.

2.1. Nonlinear waves in fluids

The first published observation of solitary waves
was made by John Scott Russel along the banks of a
shallow canal in Scotland. He reported his observation
of a wave propagating with no appreciable change in
form, as well as the results of decade-long experimen-
tal study, in his famous paper “Report on waves” of
1844 [73]. His work having been largely ignored for
quite some time after its publication must have gener-
ated some sense of guilt in the scientific community,
and it has become customary, as we have now done, to
begin a review on the subject of nonlinear water waves
with a reference to his work. To this, we would like to
add a reference to another pioneer in the field, Joseph
Boussinesq. His publication [8] of what we now call
the Korteweg—de Vries (KdV) equation,

ur + sy sy + gy =0, (1)

preceded by more than two decades the derivation by
Korteweg and de Vries, published in 1895 [{48]. The
KdV equation (1) is written in the usual nondimen-
sional form, in which all the physical parameters are
scaled into the definition of space x, time ¢ and velo-
city of water u(x, t). Not only was Boussinesq the first
to derive the model, but he also carried out some non-
trivial analysis and found the first members of an in-
finite hierarchy of conservation laws [60]. Boussinesq
must also be credited for the first theoretical evidence
of solutions that resembled Russel’s solitary wave. His
rationale for how such solutions can come about is
the one we still favor today: two “destabilizing” ef-
fects, linear dispersion (represented by the u,,, term
in the KdV equation), and nonlinear convection (rep-
resented by the uu, term in the KdV equation) work
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against each other and exactly balance to result in a
stable solution. So it is perhaps another example of
history’s injustices that the model should be known as
KdV, although Korteweg and de Vries do deserve the
credit for having isolated Eq. (1) among Boussinesq’s
many alternative models and for calling attention to
its solitary wave solution in their paper [48].

The KdV equation had to wait almost another cen-
tury before it was finally given its place as a paradigm
for all nonlinear wave models by the work of Zabusky
and Kruskal in the mid-1960s [82]. At that time com-
puters were making their first appearance in general
scientific research, and effectively turning the branch
of mathematics related to evolution equations into
an experimental science. In numerical experiments
following those of the seminal work of Fermi et al.
[19], Zabusky and Kruskal discovered that an initial
sine wave would break into a train of stable solitary
waves under the flow of the KdV equation. They
found that when this nonlinear solitary wave collided
with other solitary waves it emerged unchanged, ex-
cept for a phase shift — a remarkable property, and
they gave the name “soliton” to these particle-like
solitary waves.

The simulations of Zabusky and Kruskal motivated
the mathematical community to search for new an-
alytic tools to explain the phenomena. The enticing
behavior of the KdV solitons slowly gave birth to some
of the most significant advances in applied mathemat-
ics during the 20 century. In an ingenious tour de force,
Gardner et al. [23] put together in 1967 the elements
of what is now known as the “inverse spectral trans-
form” (IST), a sequence of essentially linear opera-
tions that allows the construction of the solution of the
KdV equation. The IST identifies the soliton (particle-
like) components of the solution as nonlinear modes (a
generalization of the Fourier modes for linear PDEs)
which coexist with modes that are purely dispersive
(radiation-like).

Remarkably, the KdV equation can describe the
main features of a range of fluid waves from the small
narrow channel where Russel chased the soliton to the
huge internal waves flowing in the Andaman Sea. Of
course, it would be unfair to ask such a simple model
like the KdV equation to stretch beyond the level of

a qualitative understanding over such a wide range of
physical situations, though quantitative agreement be-
tween experiments and KdV theory does exist and can
often be amazingly good. Over the years, many more
refined models have been proposed. Starting with the
one and two equation models proposed in the origi-
nal works of Boussinesq, we also note here the alter-
native model proposed by Benjamin et al. [6], which
points to the idea of “regularization™ of a dispersion
relation and its consequences for improved numerical
and physical behavior. Unfortunately, this model does
not lend itself to IST as we know it, but an integrable
generalization has been proposed [13], with interest-
ing solution properties.

Despite its success at providing a framework for
the Andaman Sea internal waves, the KdV can fail to
be the appropriate asymptotic model in the presence
of very deep layers of almost homogeneous fluid. For
such a case the correct asymptotic model was found by
Benjamin in 1967 [5], a nonlocal version of the KdV
equation in that one of the derivatives of the dispersion
term u,., is replaced by a Hilbert transform. This
model, commonly referred to as the Benjamin—Ono
(BO) model, is also completely integrable by the IST,
but the application of this method is far more difficult
than its counterpart for the usual KdV model. The IST
theory for the BO equation has been recently used for
evaluating the effects of perturbations. A sequence of
posters at NWSPS by Kaup, Lakoba, and Matsuno
presented the latest advances on this subject. We also
note that the subject of near integrable equations and in
particular of perturbation theories based on IST have
been given new life by the recent advances in fiber-
optic communications (Section 3).

The BO model is actually the limit, as the depth
of one of the fluid layers goes to infinity, of another
nonlocal model known as the intermediate long-wave
(ILW) equation, which can also be solved by IST. In
his lecture at NWSPS, Bona presented new advances
on the global existence theory of coupled ILW equa-
tions, a system that is appropriate for waves at the
free surfaces of a shallow layer of water sandwiched
between two deep layers of different densities.

An effort that lately has received some new impetus
is that of investigating the consequences of varying
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the relative balance of dispersion and nonlinearity
that goes into making a solitary wave. Although the
experimental observations of waves that are long with
respect to the total water depth confirm the KdV bal-
ance (of the wave amplitude scaling like the square
of the wavelength), for internal waves in the presence
of a deep fluid layer the Benjamin model has proved
to be inadequate (Koop and Butler [47]). The main
reason for this inadequecy seems to be the strong
nonlinearity, as expressed by a suitable amplitude
parameter, that internal waves can achieve in deep
water, and make an asymptotic model based on the
smallness of this amplitude parameter inappropri-
ate. Inclusion of higher-order terms in the long-wave
small-amplitude asymptotic expansion that leads to
BO offers no relief: the expansion itself becomes
disordered for sufficiently long waves (Matsuno [55]).

Recently, a class of models capable of handling
large amplitude waves has been proposed, and the
comparison with existing experimental data [15] is
very encouraging. These models can be viewed as a
modification of the classical Boussinesq systems for
homogeneous fluid in the same spirit as the BO equa-
tion modifies KdV. It is an open question whether any
of these new equations possess some of the structures
that make KdV and BO such interesting mathematical
objects.

In this issue of Physica D, Wu [81] has made the
search for models that account for various degrees of
importance of nonlinear and dispersive effects more
systematic. His starting point is a reformulation of
the Euler equations for an incompressible, inviscid,
and irrotational fluid into two (exact) equations. The
first equation is the continuity equation averaged over
the water depth, and second equation is the horizon-
tal component of the momentum equation at the free
surface. The equations have three unknowns: horizon-
tal velocity at the free surface (in two dimensions),
the mean horizontal velocity averaged over the water
depth and the water surface elevation. By closing the
system with a third approximate equation that relates
the velocity fields, most previously known models can
be recovered and extended.

Because of the generality of the formalism, the
number of spatial dimensions in these models re-

quires no restriction. If, however, the variation of the
wave pattern in one direction is assumed to be weak,
the Kadomtsev—Petviashvili (KP) equation [38] can
be derived as a (weakly) two-dimensional generaliza-
tion of the KdV equation. Like the KdV equation, the
KP equation is a completely integrable Hamiltcnian
system and admits a large family of periodic and
quasiperiodic solutions. The periodic cnoidal wave
solutions of the KdV equation correspond to the
one-phase KP solutions. Multi-phase (quasiperiodic)
solutions expressed in terms of Riemann theta func-
tions are also known. The two-phase KP solutions
are the simplest genuinely two-dimensional ones and
form permanent spatial patterns of crossing traveling
waves. These two-phase solutions have been observed
on ocean bays and have been produced in laboratory
experiments. The agreement with the KP modal is
sometimes as spectacular as for the KAV equation.
Unlike KdV however, the KP equation does not yet
have an IST solution of the initial-value problem,
a severe limitation for practical applications. Some
progress in the direction of a solution to the initial-
value problem is established for quasiperiodic initial
data in this special issue by Deconinck and Segur
[17].

As remarked in Section 1, the IST can be viewed as
a sort of nonlinear Fourier transform. Osborne et al.
[68] push this analogy to its ultimate consequences
- time series analysis by the periodic IST. When
shallow water surface data from the Adriatic Sea. are
analyzed with this new tool, a very appealing physical
picture emerges: oceanic wave trains in shallow water
appear as a composition of a “soup of particles” (the
nonlinear cnoidal waves and solitons) living in a sea
of “intermediary particles”. The latter are responsible
for the interactions among the primary stable parti-
cles (nonlinear modes) and in particular determine
the resulting phase shifts. Besides its theoretical (high
energy physics like) appeal, this picture is relevant
in the design of offshore structures, like drilling plat-
forms, where it is necessary to account for the type of
wave forcing that the structure is likely to experience.
Additionally, in his talk at NWSPS Osborne also
presented some new experimental and theoretical
advances for the problem of waves running up an
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inclined bottom topography and reaching the limit of
sharp crests.

Some of the physically important perturbations of
the above models come from wave interaction with
bottom topography. When the bottom is slowly vary-
ing, the long wave KdV-like equations can be aug-
mented with variable coefficients to account for the
change in water depth. Milewski [57] derives appro-
priate asymptotic models and shows that, for unidi-
rectional changes of the topography, two-dimensional
solutions that vary slowly along the direction of con-
stant depth can be described within the formalism of
one-dimensional models.

The KdV equation arises in situations other than
gravity waves. For example, Ludu and Draayer re-
cently used the KdV equation to model the nonlinear
oscillations on the surface of a drop of liquid [52].
They apply the model to alpha and cluster formation
in heavy nuclei and demonstrate that the predictions
agrees extremely well with experimental data.

The KdV equation has also been used by Malfliet
and Ndayirinde [53] to model solitary waves (pressure
pulses) of an incompressible fluid confined in along
thin viscoelastic circular cylinder. They derive many
of the relevant quantities, such as the wave speeds,
by a direct perturbation technique. They investigate
the influence of the different parameter values and
compare the results to experimental data.

In an investigation related to the subject of inter-
nal waves in fluids of variable density, Goez [24]
derived a new weakly nonlinear wave equation to fol-
low the suspension of two-phase flows in fluidized
beds (e.g., gas bubbles finely distributed in a liquid).
Uniform states in fluidized beds can be unstable and
bifurcate subcritically into a branch of periodic trav-
eling waves. He derived a KdV-type equation govern-
ing long-wave dynamics by using the Froude number
as a small parameter that measures both the size of
the perturbation terms and the strength of the insta-
bility. The traveling-wave solutions of the model turn
out to be unstable for very dense or very dilute fluid
beds, sometimes with finite time blow up, although in
the full equations these instabilities eventually satu-
rate. Thus the model can only be used to capture the
onset of instability.

2.2. Waves and patterns near instabilities in fluid
flows

The onset of instabilities often occurs in the form
of traveling wave patterns. Porta and Surko [70] have
examined a type of convection instability that occurs
in mixtures of water and ethanol far from equilib-
rium. Their experimental setup includes a cylindrical
convection cell with a large aspect ratio. Initially, they
observe small domains of large-amplitude traveling-
wave convection patterns, separated by regions of
“cross-roll” instability. These patterns evolve to a
globally rotating state where large regions of convec-
tion rolls (oriented perpendicular to the boundaries)
travel around the cell and are separated by small
regions of defects. The analysis of Porta and Surko
focuses on identifying parameters in the complex
patterns they obtain experimentally to establish quan-
titative means of comparison with analytical and
numerical models. They point out that quantitative
information on the evolution cannot be obtained by
a single technique. For instance, the spatiotemporal
Fourier transform can be used to compare the temporal
evolution of the system with its spatial behavior, but
detailed information on the latter can be gathered only
by focusing on the evolution of a small subdomain of
a pattern and by making the assumption that a pattern
is formed by a single (deformed) wave component.
The investigation of Porta and Surko is particularly
significant because the question of how to extract
quantitative information from experimental observa-
tions is not confined to their particular experiment, but
extends to the study of many nonequilibrium systems,
such as chemical waves and nonlinear optical laser
systems, where complex patterns are likely to arise.

Wave patterns commonly arise in vertically
driven fluid layers. Because of the competition of
gravity/vertical acceleration forces and capillary
forces, beautiful wave patterns appear at the free sur-
face of the fluid in a phenomenon known as Faraday
instability when parameters exceed certain thresh-
olds that depend on the frequency and amplitude of
the driving. When nonlinearity is important, these
patterns can have a rich underlying mathematical
structure based on their symmetries, and a recent
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theoretical study by Silber and Proctor [75] presents
many generic possibilities. Kudrolli et al. [49] offer
an experimental study of some of these patterns in
fluid driven by a two-frequency vibrating table. They
describe the patterns they observe as “superlattices”,
because they can be thought of as a composition
of two different hexagonal sublattices interacting
with each other. This observation further extends
the already vast variety of symmetric patterns that
nonlinear surface waves are known to assume.
Symmetric patterns are but one of the fascinat-
ing effects of instabilities in parametrically driven
fluids. Increasing the amplitude of the forcing excites
a stronger nonlinear response of the fluid, and the
Faraday waves can focus their energy into a violent
erupting fluid spike, or jet. When the excitation of
these frequency-locked periodic wave states exceeds
a threshold, the modulated waves break into an ape-
riodic state with erupting spikes, ejecting droplets
and entraining air. In this special issue, Hogrefe et al.
[35] describe their experimental observations of such
phenomena. They also introduce a low-dimensional
mode! of the fluid dynamics and singularity forma-
tion based on return maps of the wave height. Using
this analytical tool, they are able to accurately predict
the temporal dynamics and threshold for the critical
focusing of the energy in individual spiking events
observed in their experiments. The spiking event sig-
nals the formation of a singularity at the fluid’s free
surface. The singularity observed in the experiments
by Hogrefe et al. not only appears as a loss of smooth-
ness of this surface but also shows a tendency to a
blow up in amplitude (height). Of course, in reality
infinite amplitudes cannot be achieved, and an upper
bound is provided by a Rayleigh instability cut-off,
which breaks the thin neck of the jet into droplets.
Another example of the underlying unity of non-
linear science in fluids appears in the paper by Forest
and Wang [21] who studied the Rayleigh instability
of cylindrical jets of a liquid polymer. This instability
is due to the competition of surface tension forces
associated with different radii of curvature of the jet,
and is amplified by the exponential growth of the
amplitude of long axisymmetric waves at the jet’s
free surface. Controlling the onset of this instability

is important in industrial applications, as in the case
of liquid crystalline polymers (LCPs) which are used
for everything from sports coats to sports cars. The
molecular-scale microstructure created by spinning
the fibers greatly affects their performance. The in-
ternal orientation of the slender fibers in the spinning
process can be modeled by a wave equation. The
stability of the spinning process is governed by the
Rayleigh capillary instability of the coupled hvdro-
dynamic and orientation effects. The strong coupling
of the internal orientation of the microstructure to the
hydrodynamics in the filaments significantly alters the
stability boundary from the classical inviscid analy-
sis. Forest and Wang compute the linearized stability
boundary in terms of the LCP effects such as kinetic
energy, relaxation, anisotropic drag, and the upstream
degree of orientation. Their analysis confirms that
anisotropic oriented filaments are less susceptible to
capillary instabilities than are similar filaments of
homogeneous, isotropic fluids.

Perhaps the most classical example of wave patterns
generated by instabilities in fluids is that of Rayleigh—
Bénard (RB) convection. When convection takes place
in a rotating environment, several new effects, which
are due primarily to the Coriolis force, come into play
(see [14]). This situation is especially interesting be-
cause it occurs naturally in planetary atmospheres,
in oceans, and in solar plasmas, and in experiments
of thermal convection with rotation about a vertical
axis in a controlled laboratory environment can greatly
help the modeling of these large-scale fluid motions.
Vorobieff and Ecke report some new observations of
the turbulent velocity field in the unstable thermal
boundary layer at the top (cold) plate of a rotating RB
cell [80]. By quantifying the velocity field through the
scanning particle image velocimetry measurements,
they have been able to confirm earlier theoretical pre-
dictions by Julien et al. [37] about the combined ac-
tion of viscosity and rotation (Ekman pumping) in the
boundary layer. The findings of Vorobieff and Fcke
point to the mechanism of Ekman pumping as a pos-
sible explanation of the heat transport enhancement
observed in turbulent rotating RB convection.

Instability thresholds are usually expressed in terms
of dimensionless numbers. They appear everywhere
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in fluid dynamics, and provide a unifying viewpoint
for fluid flows that can occur over a range of sev-
eral orders of magnitude in relevant scales. In the
RB convection experiments previously mentioned,
the instability number, representing a measure of the
competition between viscous and buoyancy forces, is
called the Rayleigh number. The paper by Doering
and Wang [18] deals with what could be arguably
considered the most famous nondimensional num-
ber in fluid mechanics, the Reynolds number (Re).
This number offers a measure of the competition
between inertial and viscous forces. It is in terms
of this number that the threshold between ordered
laminar flow and disordered turbulent motion is ex-
pressed. Turbulent motion may well be considered
as the ultimate complex behavior exhibited by non-
linear viscous fluids. From a dynamical systems
viewpoint, under certain conditions, the long time
dynamics of these fluids can be governed by a finite
(albeit possibly very large) numbers of degrees of
freedom [16]. The infinite-dimensional phase space
of the fluid can “flatten” as time progresses and can
concentrate onto a finite-dimensional attractor. While
this picture presents an obvious conceptual appeal
for studying turbulence, there seems to be no general
recipe, given a certain flow, for determining the exact
number of degrees of freedom, or at least a sharp
upper bound for it. The paper by Doering and Wang
examines the far end (away from laminar instability)
of the Reynolds’s number spectrum, as Re — oo in
two-dimensional incompressible shear flows modeled
by the Navier-Stokes equations. Doering and Wang
establish rigorous estimates of the asymptotic depen-
dence on Re of the attractor dimension, considerably
sharpening the previously available results. For these
turbulent channel flows, the estimates of Doering and
Wang in turn rigorously define, from first principles,
the smallest spatial scale, a quantity that is of great
importance for adjusting the resolution of numerical
and experimental studies of such flows.

3. Optics

The creation of an information superhighway
based on-terabit-per-second optical-fiber transmis-

sion systems presents an exciting opportunity for
the applied mathematics and optical communications
communities. With the development of all-optical,
erbium-doped fiber amplifiers in the 1980s, all-optical
networks became possible, and immediately the long
time propagation properties of pulses in fibers became
relevant to achieving higher performance. Indeed,
nonlinear fiber optics is one of the best meeting places
between some of the most interesting techniques of
applied mathematics and practical engineering.

In this section, brief descriptions of many of the
talks and posters given at NWSPS which are directly
related to optics are included, in addition to descrip-
tions of all the optics-related papers in this volume.
The former are included because these materials aptly
illustrate the state of the art in this focused and quickly
advancing field.

Under the assumption of a single optical polariza-
tion, the equation governing the electric field envelope
in a single-mode optical fiber turns out to be the per-
turbed Nonlinear Schrédinger (NLS) equation,

% _ gzt +ilgl’q
0z 2572
—F(Z.T.q,———aq,...), @
T

which is written here in nondimensional “standard
soliton units”, as they are commonly known. The
coordinate T is the nondimensional time in the re-
tarded frame associated with the group velocity of
wavepackets at a particular optical carrier frequency.
The nondimensional coordinate Z is the longitudinal
spatial coordinate along the fiber. The funtion d(Z)
takes into account variations in group velocity disper-
sion along the fiber, while the perturbation F takes
into account losses, higher-order linear and nonlin-
ear corrections, periodic amplification, and any other
optical processing imposed on pulses. The NLS equa-
tion was first derived for optical fibers by Hasegawa
and Tappert [33] in 1973. For a detailed derivation of
this equation using multiple scales techniques in the
context of optical fibers see, for instance, the book by
Newell and Maloney [65].

If higher-order effects, losses, and variations in dis-
persion are neglected, i.e., if F = 0 and d(Z) is a
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constant, then in both the defocusing (d < 0) and fo-
cusing (d > 0) cases the unperturbed NLS equation
is a completely integrable Hamiltonian system, on the
real line and also under periodic boundary conditions,
via the inverse spectral method [20,71,83,84].

On the real line the NLS supports N-soliton solu-
tions, the 1-soliton solution being given by

qg(Z, Ty=nsech(n[T —xZ — To])
. i 5 2 .
X exp{——ucT«}—E(n —K )Z+1cro},

where 1, To, k, and oy are the (real) soliton parameters.
Various properties of soliton solutions and the way
these depend on physical parameters are crucially im-
portant for fiber optics applications. For example, the
pulse-width and amplitude parameters are both iden-
tified with #, so that these properties are slaved. This
slaving is a direct consequence of the balance between
nonlinearity and dispersion that the soliton solution
embodies. Subsequently, changes in the energy or am-
plitude of pulses due to perturbations tend to produce
changes in pulse-width as well, leading to a com-
plicated interaction between nonlinearity, losses, and
dispersion. This slaving also means that smaller pulse-
widths require higher peak amplitudes, with the con-
sequence that higher-order nonlinear effects become
significant when one tries to decrease pulse-width to
increase the bit rate. These nonlinear effects, as well
as higher-order linear effects, typically become signi-
ficant for pulse-widths on the order of a picosecond or
less, corresponding to bit rates of approximately 100
gigabits per second or larger.

Over the years, there have been many significant
contributions to the development of an NLS soliton
perturbation theory to describe the effects of pertur-
bations. Among these are the fundamental contribu-
tions of Kaup [40-42], Keener and McLaughlin [43],
Kodama and Ablowitz [46], Karpman and Solev’ev
[39], and Kodama and Hasegawa [31,32]. Biswas
gave a poster at NWSPS presenting an advanced
multiscale perturbation theory of the NLS equation,
which obtains a consistent slow dynamics that was
not obtained with the usual soliton-ansatz of previous
theories.

The solitons of the unperturbed NLS equation ¢ol-
lide elastically; that is, they completely regain their
initial form after collisions with only a change in
phase. They are also the only stable pulse solutions
of the NLS equation, in the sense that small perturba-
tions do not grow asymptotically in time in an appro-
priate norm. These properties suggest that, in an ideal
world, they would be the ideal carriers of information
in fiber-optic links. This elastic property of soliton in-
teraction makes the soliton particularly appealing for
use in the so called Wavelength Division Multiplex-
ing (WDM) technique. This techniques consists of
transmitting data streams in multiple frequency chan-
nels within the same optical fiber. WDM is generally
preferable to using a single channel of extremely short
pulses, called Time Domain Multiplexing (TDM), to
take advantage of the enormous bandwidth available
in optical fibers with the present technology. The rea-
son is that the amplitude-pulse-width slaving by the
parameter 7 quickly leads to very destructive higher
order effects in broad-band TDM systems. Unfortu-
nately, different frequencies in the WDM technique
mean different (group) velocities, and so pulses in
the data streams would necessarily undergo multiple
collisions. These interactions among channels would
eventually corrupt the structure of the bit patterns. The
elasticity of the collision for solitons provides an ele-
gant solution to this problem.

The feasibility of soliton based WDM systems has
been recently demonstrated in experiments that have
achieved bit rates of terabits per second over short
distances, and hundreds of gigabits per second over
thousands of kilometers. Of course, in actual experi-
ments the unperturbed NLS equation is only a rough
approximation, and the perturbations that one needs to
add to NLS destroy the elasticity of soliton collisicns.
In order to achieve the high bit rates above, investiga-
tors [54,61] had to devise clever ways of controlling
the effects of perturbations to make the collisions as
elastic as possible.

Arguably the most important effect limiting the
elasticity of soliton collisions is due to the persistence
of sideband frequencies generated during a two soliton
collision in presence of perturbations. These residual
sideband radiative modes interact with the solitons
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gradually perturbing their phases and hence their
positions within their time slots, leading to timing
“jitter”, and hence communication-bit-error rate.

At NWSPS, Biondini presented a poster on his
fundamental work with Ablowitz on four-wave mix-
ing [1]. By deriving analytical expressions for the
four-wave mixing terms in lossless fibers using an
asymptotic expansion of the N-soliton solution of
the NLS equation, this work showed that the four-
wave mixing increases by an order of magnitude
when losses and periodic amplification are present.
Moreover, a resonance condition between the soli-
ton frequency and the amplifier distance was derived
that correctly predicts all the relevant features of the
four-wave mixing in real fibers.

Research on ways to increase the capacity of op-
tical communication systems, regardless of the par-
ticular format, is naturally very active. One the most
promising techniques in this direction is the so-called
dispersion management approach, tested in soliton-
transmission system in 1995 by Suzuki et al. [76].
In this technique the group velocity dispersion of the
fiber, represented by the coefficient d(Z) in Eq. (2),
is made to switch periodically along the fiber between
positive and negative values, so that the path averaged
value of d(Z) remains small and positive. In soliton
systems, this allows to decrease the effective width of
the pulse.

In this special issue of Physica D, Kodama presents
a detailed theory of these pulses [45] in a single
channel. For weak variations of the dispersion d(Z),
he employs the so-called guiding center, or normal
form theory, based on the Lie transform, which he
and Hasegawa had previously introduced to the fiber-
optic community with great impact [31,32]. In this
paper Kodama also shows that for large variations
of dispersion the leading order equation is the NLS
with a quadratic potential, a result previously ob-
tained by Hasegawa and Kumar based on the Talanov
transformation and reported in Hasegawa’s NWSPS
paper [30]. In this paper and NWSPS talk, Hasegawa
has analyzed a new type of nonlinear stationary opti-
cal pulse, or quasi-soliton, generated by inserting an
optical “chirp” with a programmed time-dependent
frequency into a fiber that has been carefully doped

to create an inhomogeneous disperion coefficient.
The quasi-soliton is the solution of the NLS equation
augmented with quadratic potential, and has a shape
between Gaussian and hyperbolic secant. Being effec-
tively narrower, this pulse is potentially better suited
for ultrahigh-speed transmission lines in specially
designed fibers.

In another interesting application of the Lie trans-
form technique to the slowly varying spectrum of a
pulse in dispersion managed system, Gabitov in his
talk at NSWPS obtained a new equation which models
slow nonlinear dynamics of the pulse spectrum. Using
this new equation he proposed a dispersion profile that
effectively reduces accumulation of four-wave mixing
sidebands in WDM systems, thus decreasing the bit-
error rate in such systems.

Finally, two other posters presented at NWSPS
dealt with the properties of the dispersion managed
pulses. The poster by Turitsyn gave a theory of
these pulses and examined their stability. A poster
by Cruz-Pacheco derived traveling-wave solutions
for dispersion-managed lines by using a perturbative
approach, and showed that fast jitter occurs when an
initial frequency correction is included.

A major source of timing jitter which is present
even in single channel (TDM) systems is the phase
shift that pulses acquire from the addition of sponta-
neous emission noise from the optical amplifiers used
to compensate losses. This specific forms of timing
jitter is called the Gordon—-Haus effect [26]. A very
effective method for reducing the Gordan-Haus effect
and timing jitter in general, called sliding-frequency
guiding filters, was proposed in 1992 by Mollenauer
et al. [62]. In this technique, the pulses are filtered pe-
riodically with filters whose center frequencies slowly
shift along the fiber. Due to their intrinsically non-
linear nature, the solitons can adjust their spectra to
follow the filters, provided that some additional gain is
provided to offset the dissipative effects of the filters.
Noise, which has a much smaller intensity than that
of the solitons, evolves linearly, and therefore cannot
follow the filters and is hence reduced.

In an NWSPS poster, Horne showed that the error
rate from collision-induced timing jitter WDM soli-
ton systems with sliding-frequency filters only grows
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linearly with distance, a result that was previously
known only through numerical simulations.

Ultimately, the best approaches may involve com-
binations of several techniques, including dispersion
management, sliding-frequency filters, and dispersion
tapered fibers. The latter technique is one whereby
the broadening in pulsewidth that is usually accom-
panied by loss in energy is eliminated by exponen-
tially, or approximately exponentially, decreasing the
group velocity dispersion, i.e., d(Z) in Eq. (2), with
Z along the fiber. In talks given at NWSPS, Mamy-
shev [54] and Mollenauer [61] discussed the various
pros and cons of such combinations. For example,
they described how the WDM approach using multi-
plexed dispersion managed solitons in a transmission
line with sliding-frequency filters has the potential for
transmitting up to 10 or 20 gigabits per second in each
channel over essentially infinite distances. With sev-
eral tens of channels, yielding total bit-rates of 100
gigabits per second and up, these results are a very
good example of the state of the art.

Sliding-frequency filters may also be used for other
purposes. For example, a poster was given by Burtsev
and Camassa at NWSPS, described the use and op-
timization of sliding filters to convert pulses in the
non-return-to-zero (NRZ) format to the soliton format
(return-to-zero, or RZ format). In this work, a massive
application of the inverse scattering transform was im-
plemented numerically to observe the soliton content
of pulses.

The reduction of timing jitter may also be ap-
proached by all-optical regeneration of the data
stream. In this special issue, Niculae and Kath [66]
present analytical and numerical studies of an all-
optical clock recovery system which uses a data
stream to mode-lock a fiber laser through cross-phase
modulation to reduce the timing jitter. By transmitting
data and laser pulses simultaneously in a fiber, the
cross-phase modulation induces mode locking. Using
soliton perturbation theory, they analyze the situation
when the laser pulses are close to optical solitons and
show that the temporal walk-off between the signals
has an important role in reducing the timing jitter.

Other current research questions focus on the inter-
actions between orthogonal polarizations in the fiber.

About 10 years ago, Menyuk [56] showed in numer-
ical simulations that at high power two polarizations
can interact and strongly couple two initial pulses with
opposite polarization into a single pulse with both po-
larizations. In an NWSPS poster, Lakoba presented
a perturbation theory for the soliton of the Manakov
equations and applied the theory to the problem of
soliton propagation in randomly birefringent fibers.
Lakoba analyzed the slow evolution of the soliton and
the emitted radiation, and obtained results that sup-
port earlier numerical simulations and a simple intu-
itive description of the soliton dynamics viewed as
quasiparticles.

Polarization effects also play an important role
in fiber-optic devices such as couplers. In this
special issue, Valkering et al. [79] employ a cou-
pled NLS equation to model optical couplers.
They show that switching occurs when an in-
coming symmetric soliton is unstable in the cou-
pler and that a stable asymmetric soliton with the
same energy as the incoming pulse exists con-
currently. They approximate this mechanism in
a simple three-dimensional phase space analysis,
which suggests that the energy transfer between
the two channels can accurately predict the sharp
transition between the switching and nonswitching
behavior.

The present state-of-the art in optical communica-
tions is NRZ systems. These were analyzed in detail
by Kodama in his NSWPS talk. In particular, he exam-
ined the case of zero dispersion limit for such systems,
in agreement with results of the general theory de-
veloped by McLaughlin and collaborators in the early
eighties.

Research on solitons in dispersive media with a
second-harmonic-generating quadratic nonlinearity
has been thus far focussed on stationary spatial soli-
tons in one-dimensional media or two-dimensional
media with cylindrical symmetry. Unlike a cubic non-
linearity, the quadratic nonlinearity does not give rise
to the wave collapse in two- and three-dimensional
media and potentially could produce stable “light
bullets”, i.e., fully localized spatiotemporal solitons,
in bulk dispersive quadratic media. Musslimani and
Malomed [63] demonstrate that continuous wave
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solutions to the second harmonic generation equations
in a multidimensional quadratic nonlinear dispersive
medium are always modulationally unstable. They
also consider the modulational stability in a more
general three-wave system.

More general and fundamental aspects of nonlinear
wave mixing are also of interest to the nonlinear optics
community. For example, in this issue Alber et al. [4]
derive the Hamiltonian Lie—Poisson structures of the
so-called three-wave equations associated with the Lie
algebras of SU(3) and SU(2) and show that they are
compatible. In a poster presented at NWSPS, Biondini
and Ablowitz used an asymptotic expansion of the
N-soliton solution of the NLS equation to derive the
asymptotic wave equations governing the envelope of
a light pulse in a nonresonant quadratic material. They
showed that under proper conditions, the system leads
to vector NLS-type equations that appear to be gener-
alizations of the Davey-Stewartson equations.

Also in this issue, Miller and Akhmediev [58] inves-
tigate multisoliton interactions in planar waveguided
optics modeled by vector NLS equations. Their anal-
ysis by separation of variables constructs an exact so-
lution of a linear Schridinger equation for a class of
potential functions that directly relate to the multisoli-
ton collisions.

4. Materials science

Dynamics on discrete lattices is an old area of non-
linear science (e.g. the Fermi-Pasta—Ulam experiment
described below) that has recently seen an explosion
of new interest, due primarily to the relevance of
these models to problems in material science, solid-
state physics, chemistry and biology. Unfortunately,
the discrete lattice ordinary differential equations that
arise so naturally in these systems are not as sub-
missive to mathematical analysis as their continuous
PDE counterparts.

In the early 1950s Enrico Fermi, John Pasta, and
Stan Ulam conjectured that the energy in a one-
dimensional lattice of masses connected by nonlinear
springs, as modeled by the now famous FPU system
of ODEs

d%u;
_drzl = (Uit1 = 2u; + ui—1)

+el(iv1 — ui)? — (ui — ui_1)?], 3)

would thermalize, that is, for any initial condition
the nonlinearities would cause the energy to cascade
and distribute evenly among all the accessible linear
modes of the system [19]. This conjecture was based
on the post-Poincaré but pre-KAM intuition that the
phase space is either filled with tori when the sys-
tem is integrable (the case here when ¢ = 0) or else
nonintegrable with a homogeneous sea of ergodic tra-
jectories (the case when € 7 0) and associated stochas-
tic dynamics. (Fermi published a proof attempt of this
as early as 1923.) In what is now recognized as a
cornerstone in the field of computer simulations of
nonlinear systems, they solved the differential equa-
tions numerically on the MANIAC-I computer at Los
Alamos. Numerical simulation was still in its infancy:
each iteration (some simulations had 80 000) required
refeeding the stack of punchcards. To their great sur-
prise they found that instead of the expected gradual,
continuous flow of energy from the first mode to the
higher modes, the energy remained bound in the low-
est few modes, cycling about in a quasiperiodic fash-
ion. The solution again and again continued to almost
return to its initial state.

Initial efforts to resolve this mystery basically took
two different approaches: analysis of the discrete pro-
blem using perturbation methods and analysis of as-
sociated continuum equations extracted in the limit of
small € (the measure of the strength of the nonlinear
interaction between neighboring particles). It was this
latter route, first taken by Zabuski and later joined by
Kruskal, which lead to the KdV equation, and from
there to the discovery of solitons. However, as success-
ful and rich as the study of associated continuum limits
has turned out to be, there are many instances where
the numerics or physics dictate that one cannot neglect
the discrete nature of the problem. Firstly, extracting
an appropriate continuum limit can be difficult, since
discreteness can preserve the integrability that is often
lost in the continuum limit. In the Toda or sine-Gordon
lattices [77], the lattice has exact, localized oscillatory
modes that are unstable in the simplest second-order
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PDE approximation. That which is a discrete stable
soliton for the lattice can form a discontinuity in the
second-order continuum limit of (3). Secondly, the in-
teraction between discreteness and nonlinearity is the
reason that breather solutions are quite robust in dis-
crete systems and so important to the understanding
of the novel properties of many materials.

Techniques that are highly developed for contin-
uum systems, such as the IST, have been generalized
very little to discrete systems, except for the Toda
and Ablowitz-Ladik models [2]. To address this gap,
Peryard describes in his article [69] how to use the
techniques of linear stability and analysis of wave
propagation and how resonances can be used to better
understand these discrete dynamics.

In his talk, Sievers described how, in some cases, the
discreteness and lattice anharmonicity are precisely
what is needed to create localized packets of vibra-
tional energy that propagate as stable intrinsic local-
ized modes on an anharmonic crystal. In addition to
the usual kinetic and potential energy of the ac vi-
bration in these modes, the localized distortion also
holds energy. That is, the crystal structure is impor-
tant to the stability and existence of these pulses, and
they may be more likely found in zinc blend than
fec lattices. In computer simulations, Sievers found
that the gap between the optical and acoustic branches
of the plane wave phonon spectrum in pure diatomic
crystals (with realistic potentials) is the most likely
place to find these intrinsic localized gap modes. In an
NWSPS poster, Kiselev and Sievers presented a one-
dimensional anharmonic lattice model of a diatomic
crystal. Here the intrinsic gap mode between the optic
and acoustic branches allows for a localized vibration
above the top of the plane wave spectrum.

At the NWSPS conference, Lai and Sievers de-
scribed using direct MD simulations to check the
stability of the intrinsic localized spin-wave modes in
classical Heisenberg antiferromagnetic chains created
by the nonlinear properties of the discrete lattice.
They identified and studied the parameter space where
localized spin-wave gap modes occur in easy-axis
antiferromagnetic chains and where localized spin-
wave resonances occur in easy-plane antiferromag-
netic chains. They also investigated the modulational

instability of extended nonlinear spin waves in anti-
ferromagnetic chains using linear stability analysis
and MD simulations. Their simulations verify the an-
alytical predictions for short time scales. However, by
the time the instability is fully developed, the lincar
stability analysis fails and the modulated spin waves
can become chaotic.

Goktas and Hereman [25] recently implemented an
algorithm to compute polynomial conserved densities
of polynomial nonlinear lattices. The approach can
generate the explicit form of conserved densities of
differential-difference equations. Usually, the first few
conservation laws have a physical meaning, such as the
conservation of momentum and energy. The higher-
order conservation laws can aid the study of both quan-
titative and qualitative properties of solutions.

The application of nonlinear self-focusing and
pulse-shaping waves in low-loss, high-speed nonlin-
ear transmission lines requires new analysis and novel
materials. The usual linear approach of designing a
resonant response is inadequate for high data rates.
Extremely fast responses have been demonstrated in
semiconductor-based distributed devices. However,
the loss introduced by the nonlinear semiconductor
elements limits their performance.

The discontinuities created by discrete components
in communications, radar, and digital electronics are
investigated in a perturbed Toda lattice model for low
loss nonlinear transmission lines by Cai et al. [12].
They investigate incorporating nonlinear dielectric
thin films of strontium-barium-titanate in coplanar
waveguide devices to reduce the losses yet retain
the nonlinear response. At the microwave frequen-
cies of technological interest, these components have
less loss than that of semiconductor components. Lai
and coworkers have simulated and used perturbation
theory to demonstrate how a nonlinear transmission
line can shape an input pulse into a train of stable
traveling solitons.

The microscopic mechanisms for mobility, friction,
and lubrication processes is necessary for a better un-
derstanding of solid friction at a macroscopic level,
as well as adhesion, contact formation, friction wear,
lubrication, and fracture. The multiple-step dynamical
phase transition from the locked to the running state
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of atoms in response to a dc external force is stud-
ied by Braun et al. [10], who used MD simulations
in the underdamped limit of the generalized Frenkel—
Kontorova (FK) model. They demonstrate how the hi-
erarchy of depinning transition depends on the friction
in a highly anisotropic quasi-one-dimensional rectan-
gular potential and in an isotropic triangular system,
where the interactions between neighboring channels
play an important role in the dynamics.

Large-scale molecular dynamics (MD) simulations
can give new insights into the dynamics of dry friction
between two metallic interfaces. Hammerberg et al.
[29] have used two-dimensional MD simulations using
embedded-atom method potentials to study the non-
linear dynamics of slip at flat copper interfaces. Their
studies include dislocation generation, dislocation mo-
tion both parallel and normal to the sliding interface,
large plastic deformation, nucleation of microstruc-
ture, diffusive coarsening of microstructure, and ma-
terial mixing associated with a velocity weakening of
the tangential force at high relative velocities. Initially,
when the flat sliding interface is dominated by dislo-
cation motion parallel to the interface, they use a two-
chain forced Frenkel-Kontorova model to reproduce
some of the behavior of the large-scale MD simula-
tions. In particular, this model exhibits four velocity
regimes of steady-state flow and can be used to give
insights into the nucleation of microstructure.

Rigid-ion, two-body potential MD simulations can
be used to study the properties of intrinsic gap mode
eigenvectors for crystal structures. By using an artifi-
cial dynamical simulated annealing technique of the
Car-Parrinello-type crystals, Kiselev et al. [44] have
simulated the anharmonic localization of lattice vi-
brations in a perfect three-dimensional diatomic ionic
crystal. These eigenvectors consist of an ac vibrational
component and a dc distortion of the lattice. Kiselev
et al. also note that for the same crystal potential
model, the intrinsic gap modes form more readily for
the Jower-symmetry zinc-blend structure than for the
higher-symmetry fcc one.

Recently, the existence of anharmonic localization
of lattice vibrations in a perfect three-dimensional
diatomic ionic crystal has been established for the
rigid-ion model by MD simulations. The technique

was extended to three-dimensional anharmonic lat-
tices with realistic potentials by calculating the eigen-
vectors of the strongly anharmonic localized modes
using simulated annealing. The approach can also be
used to investigate the stability of localized modes in
other classical molecular models, such as the rigid
ion model for ionic crystals.

The existence of breathers in discrete ¢* field theory
is relevant in solid-state contexts. In the continuum ¢*
theory, multiple-scale asymptotic perturbation theory
arguments were the first to suggest the existence of
¢* breathers. Later, it was discovered that there were
terms beyond all orders in the perturbation expansion,
that destroyed the putative breather, and only recently
have rigorous proofs been given of the nonexistence
of breathers in the ¢* continuum theory. Motivated
by the localized, nonlinear soliton excitations in the
classical, nonintegrable ¢* field theory and the oscilla-
tory kink—antikink resonances, Campbell in his talk at
NWSPS investigated the existence of spatially local-
ized, time-periodic, nonlinearly stable breather solu-
tions. He and his colleagues have provided a heuristic
explanation of the stability (and instability) of kink—
antikink interactions found in numerical simulations
that show an intricate interweaving of stable and un-
stable breather solutions on finite discrete lattices.

In an NWSPS poster, Berman, Bulgakov, Campbell,
Gubernatis, and Sadreev studied the quantum soliton
wave function in mesoscopic ¢* theory. They consid-
ered the phase transition of the ground state of the
one-dimensional finite quantum discrete ¢* model as
a function of the strength of the quantum fluctuations.
By comparing the phase diagram generated by vari-
ational methods with quantum Monte Carlo simula-
tions, they showed that in the region of weak coupling,
both the tunneling soliton wave function and the two-
level approaches provide close approximations to the
true results.

Generalized coherent states are defined as points
of the factor spaces SU(2)/U(1). In the study of dy-
namics of the ¢ lattice model in classical nonlinear
field theories, Agueroa et al. [3] discuss the remark-
able properties of the solitons in the generalized co-
herent states. Also, it has been shown that a certain
curve in the “effective phase space” of the three-state
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quasispin model exhibits soliton solutions. By using a
lattice with nearest-neighbor exchange interaction, re-
markable properties (like the condensation of bubbles)
occur for the soliton solutions during phase transitions.

The continuous wavelet transform is an effective
tool for analyzing the frequency response of these dis-
crete breather modes. Forinash and Lang [22] have
investigated the conditions for the existence and stabi-
lity of discrete breather states, which exist in the gaps
outside of linear dispersion bands in anharmonic lat-
tices. They apply a continuous wavelet transform to
the numerical solutions and verify some of the pre-
dicted frequency behavior. The wavelet transforms can
offer a significant improvement over Fourier trans-
forms in engineering applications where it is desirable
to have information about frequencies that change in
time.

The n-kink solitary wave solutions for the para-
metrically forced sine-Gordon equation with a fast
periodic mean-zero forcing represent a new class of
solitary-wave solutions of the equation. In a poster at
NWSPS, Zharnitsky, Mitkov, and Levi have applied
this result to quasi-one-dimensional ferromagnets
with an easy plane anisotropy in a rapidly oscillating
magnetic field. In this case, the n-kink solution cor-
responds to the uniform “‘true” domain wall motion,
since the magnetization directions on opposite sides
of the wall are antiparallel. Using the normal form
technique, Mitkov and Zharnitsky [59] have shown
that the parametrically driven sine-Gordon equation
with a mean-zero forcing is well approximated by
the double sine-Gordon equation. Furthermore, the
reduced equation possesses n-kink solutions, which
are also observed numerically in the original system.
They have applied the equation to model the do-
main wall dynamics in one-dimensional easy-plane
ferromagnets where the existence of the n-kinks re-
flects the true domain structure in the presence of a
high-frequency magnetic field.

In his talk at NWSPS, Gronbech-Jensen stud-
ied the dynamical properties of coherent modes
and resonances in coupled sine-Gordon systems de-
scribing coupled transmission lines. New multiple-
characteristic spatial and/or temporal scales arise
for both linear and nonlinear modes in spatially dis-

tributed, coupled transmission lines. Furthermore, the
interaction and phase-locking between nonlinear co-
herent modes affect the metastability and dynamics
of inductively coupled long Josephson transmission
lines (JTLs).

Vertical stacks of high-tellerium Josephson junc-
tions are provided naturally by the intrinsic Josephson
junctions in layered high-tellurium superconductors.
These systems show strong inductive coupling that
is due to the extremely thin superconducting elec-
trodes. This coupling breaks the Lorentz-invariance
of the sine-Gordon equation and thus gives rise to
new phenomena. The coupled sine-Gordon systems
can be used to model vertical stacks of Josephson
junctions and, in long Josephson junctions, fluxons
can be used as a model for solitons for these sys-
tems. Hechtfischer et al. [34] study the coupling of
soliton motion and plasma oscillations in these sys-
tems. In experiments with mesa structures on single
crystals of Bi;SrpCaCu;0s.x, they have shown that
the I-V characteristics and microwave emission data
can be explained by collective motion of Josephson
vortices in the intrinsic junctions. There is a broad-
band microwave emission signal that does not obey
the Josephson relation in the high-magnetic-ficld
regime. They explain this by plasma oscillations ex-
cited through Cherenkov coupling that are excited by
Josephson vortices.

The propagation of solitons in JTLs appears in
several fields of nonlinear physics, including super-
conductivity. The recent increased interest in this
field is fueled by new potential applications, includ-
ing high-temperature superconductors. A soliton in a
JTL is often called a “fluxon” since it accounts for a
magnetic flux quantum moving between two super-
conducting electrodes. The single fluxon dynamics
in discrete JTLs differs essentially from that in con-
tinuous lines as a result of strong interaction with
small-amplitude linear waves. Ustinov reviews recent
progress in applications, experiments, and modeling
of soliton (fluxon) dynamics in mutually coupled
continuous lines (stacked, long Josephson junctions)
and in discrete JTLs [78]. The magnetic flux quanta
in Josephson junctions, often called fluxons, in many
cases behave as solitons.
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The w-phase in certain elements (for example, zir-
conium) and alloys (for example zirconium—niobium)
is a metastable state and usually coexists with the
beta body-centered cubic (bce)-matrix in the form of
small particles. The bce 8 to w-phase transformation
is induced either by quenching or applying pres-
sure. Sanati and Saxena [74] studied the formation
of domain walls in these materials by extending the
Cook-Landau model for the w-phase transformation
by including a spatial gradient (Ginzburg) term of
the scalar order parameter. They obtained a static
equilibrium condition for an asymmetric double-well
Landau free-energy potential and obtained different
quasi-one-dimensional kink-type soliton-like solu-
tions corresponding to three different types of domain
walls between the w-phase and the beta matrix. They
also calculated the formation energy and the asymp-
totic interaction between domain wall soliton lattice
solutions.

Habib et al. [27] study the thermodynamics of
1+1-dimensional classical thermodynamics where at
certain temperatures, the Schrédinger-like equation
resulting from the transfer integral method to com-
pute the partition function is quasiexactly solvable.
Consequently, at these temperatures the partition and
correlation functions can be calculated exactly, both
above and below the short-range order transition.
They apply the analysis to the hyperbolic analog of
the well-known double sine-Gordon system and to the
double sinh-Gordon model and make an important
observation connecting the stationary solutions with
the corresponding solutions in the Landau-Ginzburg
and the double sine-Gordon theories. Furthermore,
the resulting probability distribution functions and
correlation lengths from high resolution Langevin
simulations are in striking agreement with the exact
solutions of the transfer integral.

Systems of macroscopic particles, such as sand or
powders, exhibit complex behavior despite their appar-
ent simplicity. Vibrated sand can segregate according
to the size of the grains and display rich patterns, soli-
tary waves, or convection rolls. Even though the indi-
vidual grains are solid, collectively they exhibit both
solid-like and liquid-like properties. As the granular
system relaxes, a growing number of beads have to be

rearranged to enable a local density increase. The time
scale associated with such events increases exponen-
tially, and the final state is approached logarithmically
slowly as 1/log¢. The density of a vibrated granular
material relaxes from a low-density initial state into
a higher-density final steady state according to an in-
verse logarithmic law. Ben-Naim et al. [7] use a simple
theoretical model of granular compaction to capture
the essential mechanism underlying this remarkably
slow relaxation. The steady-state fluctuations in the
model are similar to the experimentally observed ones
and exhibit a logarithmically slow approach to the fi-
nal state.

There is a dynamical transition in correlated, driven
diffusion of a two-dimensional array of particles
driven by a constant force in the presence of a periodic
external potential. The system exhibits a hierarchy of
dynamical phase transitions when the driving force
is varied. In his poster at NWSPS, Dauxois used
a simple phenomenological approach to reduce the
system of strongly interacting particles to weakly in-
teracting quasiparticles (kink). This strongly coupled
system displays a hysteretic behavior even at nonzero
temperature and can be viewed as a first step toward
understanding nanotribology.

In the nearly linear regime of a material with a
weakly disordered potential, the mass of solitons
whose incident mass is relatively small compared with
their velocity decays exponentially to approach a con-
stant after a large number of scattering events. How-
ever, when the ratio of the mass of an incident soliton
to the incident soliton velocity is sufficiently large, the
mass of the solitary wave asymptotically approaches
a constant, while the velocity decays slowly to zero.
This behavior agrees with theoretical predictions and
the numerical study presented by Bronski [11]. In
simulations, he followed the soliton through a large
number of scattering events by calculating the dy-
namics in the locally stationary frame of the soliton.

5. Pattern formation

Many natural phenomena result in the formation of
patterns. Chemical reactions, evolution of biological
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systems, free surface flows, fluid convection, to name
just a few, often produce beautiful geometric figures,
in general associated with an underlying symmetry. It
is one of the intriguing facts of nature that mathemat-
ical models capable of describing the formation and
evolution of patterns share a “universal” structure, one
that it is somewhat independent of the specific physical
process that generates the pattern. Amplitude equa-
tions like the celebrated complex Ginzburg-Landau
(CGL) system keep appearing everywhere in the study
of pattern formation, due to the fact that often the pat-
tern is the long-wave modulation of problem-specific
dynamics that occurs at shorter length scales. This dy-
namics can be incredibly complex, yet the large scale
evolution through an amplitude model can be associ-
ated with just a few order parameters, which pin down,
besides a particular figure, when bifurcations among
patterns are going to occur.

The paper by Bowman et al. [9] addresses one of
the outstanding issues in the area of amplitude equa-
tions for convection patterns, that of the existence of
“defects” (e.g., dislocations in the striped structure
of convection rolls). They derive evolution equations
for the pattern wavenumber through its phase func-
tion and show that they have the mixed hyperbolic—
parabolic PDE structure of nonlinear advection plus
diffusion equations. By examining the stationary weak
solutions of the hyperbolic part of the equation for the
phase function and studying the effects of the diffu-
sive operator as a pertubation, an interesting picture of
the occurrence of defects emerges. Defects are associ-
ated with the weak-solution shocks of the hyperbolic
phase equation, and the criterion for selecting which
weak solutions are realized in a given configuration
is offered by the regularization of the diffusive term.
Bowman et al. view defects as jumps in an otherwise
slowly varying wavevector function. This is appropri-
ate whenever the global pattern closely approximates
a periodic wave. A more microscopic viewpoint is,
however, necessary whenever a pattern is not so or-
dered. Defects can sometimes be identified as regions
of high curvature along fronts, sharp transitions be-
tween different states of a certain material or differ-
ent reacting substances. Moving fronts are among the
most common elements of patterns observed in nature.

Front instabilities are often responsible for the forma-
tion of a certain global pattern over a long time scale,
or their indefinitely repeating occurrence can lead to a
spatial and temporal chaotic state of a system. The tra-
ditional approach to a theoretical description of front
instabilities is to derive evolution equations that relate
the local velocity of a front to its geometric curvature.

The paper by Hagberg and Meron [28] in this
special issue addresses a situation, near the onset of
a certain bifurcation, where the front velocity can
no longer be modeled by a simple function of the
front curvature. They derive a system of integro-
differential equations that relates the velocity to the
curvature through a nonlocal equation for the bifur-
cation order parameter, within the approximation of
slow propagation and weak curvature. Hagberg and
Meron test their equations vs. numerical simulation
of the FitzZHugh-Nagumo model, obtaining excellent
quantitative agreement for the regimes of the model’s
derivation, when spontaneous nucleation of spiral
waves and transitions between counterpropagating
fronts occur.

When the dominant dispersion in the KdV-like
model

u; + (uz)x + NUxxx = Uxxxxx 4)

is the quintic term, Hyman and Rosenau observed that
pulsating multihumped solitary waves, called multi-
plets, are spontaneously created from a wide initial
pulse [36]. These quasistable pulsating waves collide
nearly elastically with other multiplets and propagate
in a breather-like fashion with a variable modulated
speed. As a multiplet propagates, it radiates a small
amount of energy behind an oscillating tail. Eventu-
ally, the energy loss drains the bound holding the soli-
tary waves together and a single solitary wave breaks
free from the multiplet, reducing the number of pul-
sating peaks by one.

In recent years Rosenau has also studied a wide
range of KdV-like systems with a variety of nonlinear
dispersions and diffusions mechanisms. In this special
issue [72] he continues his investigation by deriving a
remarkable variety of exact solutions for

u+a™), + W) xx = ﬂ(uk)xx- (5)



18 R. Camassa et al./Physica D 123 (1998) 1-20

The most notable of the casesism =k +1=n +2
when there is a detailed balance among the nonlin-
ear mechanisms. Here the spatial patterns are indepen-
dent of the amplitude, and there are explicit solutions
for the traveling waves. Furthermore, the special case
a = (211/3)? can be mapped into a linear equation
exhibiting rational, periodic or aperiodic solutions.

The subject of pattern formation is firmly rooted in
experimental observations. The paper by Lauterbach
et al. [51] presents an experimental study of great im-
portance for the manufacturing of efficient catalytic
converters, where an oxidation reaction takes place
along surfaces coated with Palladium. By using mi-
crolytography the investigators are able to control the
creation of differently shaped domains of thin Palla-
dium layers on a Titanium substrate. Their paper pro-
vides several observations on how the formation of
reaction—diffusion patterns, like spiral waves, moving
fronts etc., are affected by the domains’ shapes and
symmetries. These observations provide strong mo-
tivation for the development of a model capable of
predicting the outcome of an experiment with a given
domain, a necessary step towards mastering the effects
of domain geometries for a more efficient catalytic
reaction.

6. Summary

In this work we gave a brief overview of both the pa-
pers in this special issue and some of the presentations
at the NWSPS Conference. Unfortunately, we could
only touch on the complex and compelling nature of
nonlinear waves within the classical physical systems
of fluids, optics materials. The recent advances in these
physical sciences are also helping to build synergetic
paradigms in nonlinear science that one day will cover
these problems as special cases and may be extended
to new situations in biology, sociology, economics,
epidemiology, ecology, physiology and the other sci-
ences. The nonlinearities in these fields create patterns
of social collective behavior which can be analyzed
from the nonlinear wave viewpoint. Already in bio-
logy, the applications of nonlinear waves in pattern for-
mation and selection is being applied on scales from

solitons in alpha-helix proteins to reaction—diffusion
systems modeling the colorful patterns of strips and
spots on zebras and giraffes.

The theoretical understanding of nonlinear waves
and solitons has built a framework for understand-
ing nonlinear systems at a fundamental physical
and mathematical level. This level of understand-
ing is now deeply affecting technical applications.
Nonlinear waves analysis has become a paradigm
for understanding nonlinear materials, fluid flows,
nonequilibrium systems with diffusion, etc.

Of course, there are still many fundamental ques-
tions and challenging problems lying ahead. These
challanges include: a better understanding of the cre-
ation of nonlinear wave patterns and the dynamics and
competition among the patterns; the role of symme-
try in pattern selection and investigating the dynamics
of the solution seeking local minima in energy space
and determining the basins of attraction; rigorously
assessing the validity of the various solutions in an
approximating hierarchy of equations, such as from
Navier-Stokes to Green-Naghdi to KdV to ODEs.
Also, can this viewpoint help to understand the forma-
tion of patterns and intermittency in turbulent flows?
There are applications in nonlinear optical transmis-
sion lines, predicting global climate change, under-
standing complex chemical patterns that will capture
the imagination and efforts nonlinear scientists for
years to come.
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